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. 1.1. Determinism R RS
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All story begins:

Figure 1-1. A dice




. 1.1. Determinism ( e
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Can we predict the result of rolling dice?
— —Yes, Law of large numbers!
How about perfectly?

Furthermore, can we a hundred percent predict the world? Can
we be informed our destiny and control it just as the God?

— —Démon de Laplace?!

— —Quantum theory!
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1.2.1. What is intelligence? @ P

What is intelligence?

— —First of all, let’s take a look into the surrounding
environment.

Figure 1-2.


https://yjango.gitbooks.io/superorganism/content/zhi_neng_de_ben_zhi.html
https://yjango.gitbooks.io/superorganism/content/zhi_neng_de_ben_zhi.html
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1.2.1. What is intelligence? f% sRpETEE
— —The uncertainty of surrounding environment limits lives.
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1.2.1. What is intelligence? @ P

— —Schrodinger defined Intelligence as the ability of reducing
entropy in his book, What is Life.

| Figure 1-4.
ﬂiﬁﬁmﬂ The book What is Life
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1.2.2. What is the dominant? @ I
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What is the dominant in intelligence?

— —Speaking of that, I would sigh how pitiable the human
being is!

Figure 1-5.
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1.2.2. What is the dominant? @ I

T, 1EA—NIAATZBIRAME, HELBNTHE LG —TRIERRIR
1E% 2 HH].

— —Thinking of organ transplant
who am I?
What is my consciousness?

Is there some different between I and my brain?

Whether my soul is just the biochemical reaction?
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1.2.2. Go further through dissociation @ P

1. Dissociation in Language — —Expression and Understanding

Via higher-order frontal networks

Input from
Parieta ral Sg <«— other sensory
Dorsal stream (left dominant modalities
Phonological network P o
Mid-post STS ' g
(bilateral) , butec

Figure 1-6.
Sparse coding
in the brain

Dissociation

Poeppel, D., Emmorey, K., Hickok, G., & Pylkkanen, L. (2012). Towards a New
Neurobiology of Language. Journal of Neuroscience, 32(41), 14125-14131



https://www.zhihu.com/question/29522831
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1.2.2. Go further through dissociation @ T

2. Dissociation in Vision— —Objective recognition and subjective
identification

Figure 1-7.
Face blindness

Ellis, H. D., & Lewis, M. B. (2001). Capgras delusion: a window on face recognition.
Trends in Cognitive Sciences, 5(4), 149-156.
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1.2.2. Go further through dissociation @ P

3. Dissociation in spatial perception — —Left and right brain
separation
A word is flashed briefly to the Now a word is flashed to the left
right field of view, and the patient field of view, and the patient is
is asked what he saw. asked what he saw,

Figure 1-8.
Face blindness

Nothing

Because the left hemisphere is dominant The right hemisphere cannot share information

for verbal processing. the patient’s with the left, so the patient is unable to say
answer matches the word. what he saw, but he can draw it.

Wolman, D. (2012). The split brain: A tale of two halves. Nature, 483(7389), 260—-263.
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1.2.2. Go further through dissociation @ P

4. More extremely! Libet experiment: time separation between
consciousness and decision making

Readiness
Pofe,nf‘iql

Figure 1-9.
Libet experiment

Movement

iolvon.co.uk

Libet, B., Gleason, C. A., Wright, E. W., & Pearl, D. K. (1983). Time of Conscious
Intention To Act in Relation To Onset of Cerebral Activity (Readiness-Potential). Brain,
106(3), 623-642.
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1.2.2. Go further through dissociation @ P

Finally, the answer (mine) is that the mind of our brain is out of
our control, although we hope it controlled by ourselves.

Therefore, we name it as mind to be deeply convinced that we
indeed control it. Well, out of our mind, there is a beautiful and
amazing world!
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1.3.1 Further — —Memory Mechanism @ P

What is the essence of memory?

— —Based on neurobiological perspective, the prevalent view is
the neuron theory, which points out that memory is encoded in
the dynamic changes of the neural cell junction.

In other words, memory reflects the variability and plasticity of
neural cells.

The formation of memory is not determined by one neuro, but
by a lot of connection in neural cells.




1.3.1 Further — —Memory Mechanism f \ S
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From the molecular mechanism of learning and memory, the
study suggests that the physical basis of memory is the small
change in the synapse.

Figure 1-10.
Synapse development
mechanism

Eric R. Kandel, The Molecular Biology of Memory Storage: Adialogue between Genes
and Synapse, Science, Vol (294): 1030-1038, 2001



1.3.1 Further — —Memory Mechanism @ P

\ ’ Data Mining Lab

To simplity, long term activation ‘stronger’ synapse and by
contrast, long term deactivation “‘weaker’ synapse.

The basis of Long term memory formation is the plasticity of

neural cells. By long term potentiation (LTP) and long term
depression (LTD), connections between synapses are controlled
and then the learned are encoded in memory.




1.3.1 Further — —Memory Mechanism @ P
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1.3.1 Further — —Memory Mechanism @ P
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1.3.1 Hebb’s hypothesis @ P

Figure 1-11. A cattle
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1.3.1 Hebb’s hypothesis @ P
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1.3.2 Quickly overview for others @ P

1. EEEREM
FHIR R BN 2 E R RO S W 7= A T R R,
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Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic
impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28:309-369
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1.3.2 Quickly overview for others @ P

A=A, AR AR TR, 2 I Schultz55 AE1997F 42 t
1) BN R Z B 1% (reward prediction error hypothesis)” .
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Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward.

Science 275:1593-1599.
TS



1.3.2 Quickly overview for others @ P

2. KK EThgtE ¥ Data Mining Lab

EUENER R, NineaR2Iaemr X, Eanmiil i X Raa
RZ X, nralEAHARNEE LEFEM. thinvin T2
A, mtIn T 2% 1 ia s AR UK AR .

ARRANNERNB K R D Re X CetbBAaE 1 ARSKAE
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Chen, N., Bi, T., Zhou, T,, Li, S., Liu, Z., & Fang, F. (2015). Sharpened cortical tuning and
enhanced cortico-cortical communication contribute to the long-term neural
mechanisms of visual motion perceptual learning. Neurolmage, 115, 17-29.
doi:10.1016/j.neuroimage.2015.04.041

Chen, N., Cai, P, Zhou, T., Thompson, B., & Fang, F. (2016). Perceptual learning
modifies the functional specializations of visual cortical areas. Proc Natl Acad Sci U S

A. d0i:10.1073/pnas.1524160113
I
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1.3.2 Quickly overview for others @ P

3. W E A
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1.3.2 Quickly overview for others @ P
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Figure 1-13.
Blue spectrum



1.3.2 Quickly overview for others @ P
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Block, R. A., Zakay, D., & Hancock, P. A. (1998). Human aging and duration judgments:
A meta-analytic review. Psychology and aging, 13(4), 584.

VAT [, AR, KT & Gk, (2011). A7 TAT I EE i B L R, R K
Sl \SCH 2 REAR, 37(5), 26-33.
I
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2.0 Be motivated in deep neural network @ I
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Overwhelming in performance!!!

Significantly broaden our available research area and
imagination!
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2.0 Be motivated in deep neural network @ P

Neural network training pipeline and architecture

a b
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D Silver et al. Nature 529, 484-489 (2016) doi:10.1038/nature1696 1

nature

Figure 2-1. Mechanism of AlphaGo




Data Mining Lab

2.0 Be motivated in deep neural network @ SR

o A girl wearing glasses and a pink ® A boy brushing his hair while e Zebra looking towards the
shirt. looking at his reflection. camera.
e An Asian girl with a pink shirt e A young male child in pajamas e A zebra third from the left.
eating at the table. shaking around a hairbrush in
the mirror.

Figure 2-2. Examples of picture talking




Finc lude<stdio.h>
int main(){

#include<stdio. h>
void main()
{ o

int @ al[160],1i,max1,max2; scanf(“%d",&n);
scanf("%d",&n); for(i=0;i<n;i++){
for(i=0;1<=n-1;1++) scanf("%d" ,&sz[1i]);

{ if(sz{i]>max){
scanf("%a",&ali]); max=sz[i];}}
if (a[i]l>maxl) for(i=0;i<n;i++){

max2=a[i];} if(sz[1]>ci&&sz[1]<max){
for(i=1;1i<=n;i++) ci=sz[i];})}

{ 212 @3¢ | printf( %d\n%d",max,ci);
if(a[i]>maxt&ali)Smaxl)|return 0;
max2=ali]; 1}
}
printf{"$a\n%d",max],max2);
return @} @) ldell
} (a) Generated code (b) Training sample 1

Figure 2: (a) Code generated by RNN. The code is almost correct
except 4 wrong characters (among ~280 characters in total), high-
lighted in the figure. (b) Code with the most similar structure in the
training set, detected by ccfinder. (c) Code with the most similar
identifiers in the training set, also detected by ccfinder. Note that
we preserve all indents, spaces and line feeds. The 4 errors are (1)
The identifier “x” should be “n”; (2) “max” should be “max2™; (3) *=="
should be “<”; (4) return type should be void.

int n,i,j,sz[100],max=0,ci=0;

2.0 Be motivated in deep neural network @ I

Data Mining Lab

#includeestdio.h>
void main()

{

}

int n,i,a[108],]j,maxl, max2;
scanf("%d",&n);
for(i=0;1<n;i++)

{

scanf("%d”,&alil);

maxl=al[0];
for(i=0;1i<n;i++)

if(ali]>maxl)
maxl=a[l];
}

for(i=0;i<n;i++)
if(maxl==a[i])
i=i; (c)
Training
sample 2

if(maxl!'=a[@])
max2=alo];
else max2=all];
for(i=C;i<n;i++)
if(i==j) continue;
if(ali]>max2)
max2=a[i];

printf("S$d\n%d",maxl,max2);

Figure 2-3. Demonstration of Program Generation
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2.1.1.0 Single Neuron @ -

Single neuro:
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. 2.1.1.1 Perception f sRpETEE
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The basic unit of computation in a neural network is the neuron,
often called a node or unit. It receives input from some other
nodes, or from an external source and computes an output.

The function fis non-linear and is called the Activation
Function. The purpose of the activation function is to introduce
non-linearity into the output of a neuron.

1
b\
wil
X1 —— Y Figure 2-5. A Single Neuron
A.
X2

Output of neuron =Y= f(wl. X1 +w2.X2 + b)
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2.1.1.2 Activation Function @ -

* Sigmoid:

o(x) = 1 +e*
e tanh:
X _p=X
tanh =
anh(x) eX +e™*

e ReLU (Rectified Linear Unit):
f(x) = max(0, x)

=10 =5 L] 1o

Sigmoid tanh RelU
Figure 2-6. Different activation functions
S
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2.1.1.3 Artificial Neural Network @ I

An Artificial Neural Network (ANN)

is a computational model that is inspired by the way biological
neural networks in the human brain process information.

Input Layer Hidden Layer Output Layer

Figure 2-7.
An example of

ouput1  feedforward
neural network

Output 2 A UiCk

Introduction to
Neural
Networks

Hidden
* node 2



https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/
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2.1.1.4 Multi Layer Perceptron @ T

A Multi Layer Perceptron (MLP) contains one or more hidden
layers. While a single layer perceptron can only learn linear
functions, a multi layer perceptron can also learn non — linear
functions.

Input Layer Hidden Layer Output Layer

Figure 2-8.
A multi layer perceptron
having one hidden layer

Output from the

highlighted flfsumrnatim] f{wf.] 1wl X1 +w2 . X2)
Ighlighted neuraon
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2.1.1.4 The Back-Propagation Algorithm @ I

“learning from mistakes”

This output is compared with the desired output that we already
know, and the error is “propagated” back to the previous layer.

This error is noted and the weights are “adjusted” accordingly.

This process is repeated until the output error is below a
predetermined threshold.

From Quora



https://www.quora.com/How-do-you-explain-back-propagation-algorithm-to-a-beginner-in-neural-network/answer/Hemanth-Kumar-Mantri?srid=uSeFe
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2.1.1.4 Demonstration of BP Algorithm @ P

X,

Principles of training
multi-layer neural

. network using
backpropagation
XE
X1 w,
summing e:x,w1+x2w2 non-lingar j"'=ff6,:|
junction - EI;:neim —



http://home.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html
http://home.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html
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2.1.1.4 Demonstration of BP Algorithm @ P
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2.1.1.4 Demonstration of BP Algorithm @ P
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2.1.1.4 Demonstration of BP Algorithm @ P




2.1.1.4 Demonstration of BP Algorithm @ P
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Oy = Wy0
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2.1.1.4 Demonstration of BP Algorithm




2.1.1.4 Demonstration of BP Algorithm @ P
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2.1.1.4 Mathematics @ -

For given x(V,y(V), the output of feedforward neural network is
f (x|w, b), and then the objective function is:

qu»:ﬁp@@fumwmw>+lumﬁ
- (1) () 1 .
-3, LAl

If we adopt gradient descent method, then

W(]) _ W(]) . aJ(W, b)
B aW(])
Yo W, by x7, )
(1)
B0 = pD _ g oW, b)
ab(])

oJW, b; x7, y')
. (1)
=b" - Z( ab”) )




. 2.1.1.4 Mathematics f e
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By chain rule,
aZ(Z)

oJW, b; x, y) oJ W, b; x, y)\s
oy = e oz ) aW.<?>)

Define the first term as a error term 6%,

Indicating the influence of I*" level neuros to final error.

For the second term z" =W ® . +p"

oz a(\N(l) a( 1)+b(|))

oW ow, " ’




2.1.1.4 Mathematics

Therefore,
oS, b; x, y) _ S0

@W(J) 1 J
i

and
8](}78,;(;]))(, J/) _ 5(1)<a(1—1))7

Similarly, the gradient of b:

oJW, b; x, y) _ 50

ab(])

@

HIRSETIRE

Data Mining Lab




. 2.1.1.4 Mathematics f e
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Finally, the error term of 1t level, §(¥

(1) A 8](W, b; X, J/)

g aZ(])

aa(l) aZ(]+1) 8J<W, b; X, Y)
Py ' PG ' PYRERY

_ a’jag(f]’(z(]))) ) <W<1+1)>T .5(]+1)

_ f]’(ZU)) 0 ((W(]H))T . 5(]+1))

As is shown, the error term of 1t level can be calculated from the
one of (1+1)™ level as back propagation.
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2.1.2.0 Convolutional Neural Networks @ I

AlexNet

s e
‘v » A .

LiLE L

VGG Network in Network

*

kil
|

"F; i

Q“:QO

- -

4
]

Figure 2-9. Various CNN architectures

GooglLeNet

ResNet

&
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2.1.2.1 LeNet intuitive introduction @ P

ist ist Znd Znd
Convolution Pooling Convolution Pooling Fuilly Fully Output Predictions
+ RelU + Rell Connected Connected
Il.
e} %‘_'L r ==L 6t (0.4
I (T "t woean,
1 e e o S e
HI I . P g B e L

Figure 2-10. The architecture of LeNet

An Intuitive Explanation of
Convolutional Neural Networks



https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/?sukey=3997c0719f1515200d2e140bc98b52cf321a53cf53c1132d5f59b4d03a19be93fc8b652002524363d6845ec69041b98d

Data Mining Lab

2.1.2.1 Start from raw data @ T

Figure 2-11. The raw data of handwriting
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2.1.2.2 Convolution layer @ P

1 /1|1 0|0
0|11 1|0 1|0
001 1|1 0|10
0o/o1 1|0 Ll
01100
Figure 2-12. The raw data Figure 2-13. The convolution kernel
1]1,/1/0/0
0 L|%/1/0) |4
0lof1[1]1 Key words:
0/j0/1]1]0 « Convolution kernel
ojt]1jo0jo « Stride
Convolved .
Image Feature « Zero-padding

Figure 2-14. The demonstration of convolution



Operation

Filter

. 2.1.2.2 Convolution layer f e
\ ’ Data Mining Lab
Convolved

Identity

Edge detection

Sharpen

Box blur

(nomalized)

Gaussian blur

(approximation)

[ S-SR

Image

———

Figure 2-16. The demonstration of future extract

Figure 2-15.

different
1 feature filter
f] (kernel)
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2.1.2.3 The Pooling Step @ I

Max(1,1,5,6)=6

.| A 2| 4
< , maquolwichxZﬁlters 6
\5\,6/ 72| 8 and stride 2
3| 2 IR 4
1| 2 SIS

y

Rectified Feature Map

Figure 2-17. Max Pooling Source



2.1.2.3 Story so far

BIZISIESIRE
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| Only non-negative valy

Rectified Feature Map

Figure 2-18. Pooling Source

Pooling applied

Convolution separately on each
using 3 filters feature map
+ Rell
1
1
Rectified
Input Image Feature Maps -
rﬁ -
-'_[‘“'"D N

Figure 2-19. Pooling applied to Rectified Feature Maps
I
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2.1.2.3 Convolution layer mathematics @ P

Replace fully connected mode by convolution layer:
al) = f (W(l) ® !V _I_b(l))

where w" e R" is m-dimensional feature filter and share the same
value for all neuros in the 1" convolution layer. So, we need only
m+1 parameters. Usually, the number of neuro in the (I+1)"layer is
designed as n!*) = n® _m4+1.

In 1" layer and k" set feature map:

1-1

X (hk) — f(nZ: (W(l,k,p) ® X(l—l,p)) —I—b(l’k))

p=1
where wkp) is the map parameter of pth set feature vector in (I-1)

layer to of It set feature vector in 1! layer.




2.1.2.3 Convolution layer mathematics @ P

Data Mining Lab

For gradient computation, we assume that the 1" layer is the

convolution layer and the down sample layer is placed at the
(1+1)t layer.

To derivate the k't error term in the 1" layer §0*):
S0 & oJ(W,b; X, y)
oz ")

XM oz 5I(W L by X y)
- a7 (%) ' ax (%) ) a7 (+16)

_ fl(Z (I)) @ (up(W(|+l,k)5(l+l)))

=W (F,2") O up(*?))
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2.1.2.3 Pooling layer mathematics @ I

After the convolution layer, we get a feature map x®. Divide X (D)
into a series of areas R,. k=1,..., K

Xit= 1z
= f (W -down(R ) +b'"?)
therefore,
X" = f(w" - down(X")+b'"")
Usually, down sample function down(-) is Maximum Pooling or

Average Pooling.

pool .. (R,)=maxa,

iERk

1
pOOIavg (Rk) — |R_ Z a‘i
k iGRk




2.1.2.3 Pooling layer mathematics @ I

Data Mining Lab

For gradient computation, we assume that the I layer is the down
sample layer and the convolution layer is placed at the (1+1) layer.

Z(]+1,/() — Z (W(]+1,]f,p) ® X(],p)) + b(]+1,k)

p,Tp)k:I
To derivate the kth error term in the 1t layer §":
S0 2 oJ(W,b; X, y)
B oz
XM oz aI(W by X y)
- a7 (%) ' ax (%) ) a7 (+16)

— £, ZMo( Y (5"P)@rot180W "))

p’Tp,k :l
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 Full Connected Layer

Connections and weights
not shown here

dog (0.01)

cat (0.04) 4 possible outputs
boat (0.94)
bird (0.02)

Figure 2-20. Full Connected Layer

* Global Average Pooling + Softmax *




2.1.2.5 Think twice

LIN=
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1st 1st 2nd 2nd

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+ RelU + RelU Connected Connected

dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)

Figure 2-21. The architecture of LeNet

* Why is it successful?
* Why should it be deeper?
* Is that OK?
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» Why is it successful?
* Neuroscience
v' Receptive field in vision area
v' Top-down processing
v' Hierarchical structure

* Five space transformation operations
Increasing/Reducing dimensionality
Zooming

Rotating

Translation

DN NI NN

Bending

* Dropout



2.1.2.5 Think twice

» Why is it successful?

BIZISIESIRE
Data Mining Lab

Figure 2-22. Figure 2-23.
Raw data space Transformed data space

Figure 2-24. Figure 2-25.
Stronger transformation Failed transformation
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» Why should it be deeper?

The most direct explanation is that the number of critical
point varies with the size of network which is proportional to

Jwidth x (depth)""""*

Therefore, the increase of width leads to explosive critical
points while the increase of depth outcomes a slower
increasing.
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» Is that OK?
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2.2.1 Recurrent Neural Networks @ I

Lra

Figure 2-26. Recurrent Neural Networks

Understanding LSTM Networks



http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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2.2.1 Recurrent Neural Networks @ I

>

O ®)
1 I
= A
b & . &

@—>—@

E—>r®

Figure 2-27. An unrolled recurrent neural network
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2.2.1 Long-Term Dependency Problem @ P

@—>—@

L 133

» A > > >

o o ©

9—.
&> —@
@—

Figure 2-29. Long-term dependency
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2.2.2 Long Short Term (LSTM) @ I

>

-
> ( - >

&) ® &)

Figure 2-30. Standard RNN with single layer
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2.2.2 Long Short Term (LSTM) @ I

f 1 f

4 N\ N R
——® ® < -

Ganh>
A 1 3 2 A
Iclfllclvlltanhllgl

» -

\J J_’ J \ _J

Figure 2-31. Well designed Long Short Term
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2.2.2 Illustrate LSTM Structure @ P

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

Figure 2-32. Corresponding meaning of diagram




Data Mining Lab

2.2.2 Core Idea behind LSTM @ -

Figure 2-33. the cell state horizontally running
through the top of the diagram
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2.2.2 Illustrate LSTM Structure @ P

—®—
!
|

Figure 2-34. The gates structures
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2.2.2 Illustrate LSTM Structure @ P

ffT fo=0Wy-lhi—1,2¢] + by)

hi—1

It

Figure 2-35. The forget gate layer of LSTM




2.2.2 Illustrate LSTM Structure @ P
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it = O'(W;.;'[ht_l,il?t} + bz)
C, = tanh(We-|hi—1,2¢] + bo)

Figure 2-36. The input gate layer of LSTM
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2.2.2 Illustrate LSTM Structure @ P

C &

ﬁT i o Cy = fix Ci1 +iy * C

Figure 2-37. The implement gate layer of LSTM
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2.2.2 Mlustrate LSTM Structure @ P

Ot — O_(Wo [ht—laﬁct] =+ bo)
hy = o * tanh (Cy)

Figure 2-38. The output gate layer of LSTM
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2.2.2 Long Short Term (LSTM) @ I

f 1 f

4 N\ N R
——® ® < -

Ganh>
A 1 3 2 A
Iclfllclvlltanhllgl

» -

\J J_’ J \ _J

Figure 2-39. Well designed Long Short Term
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3.0 Illuminating Works (#251% &) @ .

1. Understanding CNN
Neural Turing Machines (NTM)
Learning to learn

Center Loss

ARl

Matrix Completion under Self-Expressive

Models

6. Generalized Similarity Measure
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3.1 Understanding CNN @ -
7

Brushing teeth Cutting trees

Figure 1. A simple modification of the global average pool-
ing layer combined with our class activation mapping (CAM)
technique allows the classification-trained CNN to both classify
the image and localize class-specific image regions in a single
forward-pass e.g., the toothbrush for brushing teeth and the chain-
saw for cutting trees.

Figure 3-1. The result of CAM

Zhou B, Khosla A, Lapedriza A, et al. Learning Deep Features for Discriminative
Localization[J]. arXiv preprint arXiv:1512.04150, 2015.
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3.1 Understanding CNN @ -

O
O \7‘ Australian
CC) g cC) :) @ : Wy / . terrier
N > N \f\/l : -
- - W
\Y
Of ™
~— e

Class Activation Mapping

Class
Activation
Map
(Australian terrier)

W1 7

Y A

Figure 3-2. The constitute of CAM

The input to softmax: S, = >, w, > £,(x, ) = 3 > wif,(x,7)
X,y X,y k

k

The CAM definition: ¥ (x, y) = ) wif,(x, )
k
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3.2 Neural Turing Machines @ P

Recurrent neural networks (RNNs) stand out from other
machine learning methods for their ability to learn and
carry out complicated transformations of data over
extended periods of time.

Moreover, it is known that RNNSs are Turing-Complete
(Siegelmann and Sontag, 1995), and therefore have the
capacity to simulate arbitrary procedures, if properly wired.
Yet what is possible in principle is not always what is
simple in practice.

Graves A, Wayne G, Danihelka |. Neural turing machines[l]. arXiv preprint
arXiv:1410.5401, 2014.
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3.2 Neural Turing Machines @ P

We extend the capabilities of neural networks by coupling
them to external memory resources, which they can interact
with by attentional processes.

The combined system is analogous to a Turing Machine or
Von Neumann architecture but is differentiable end-toend,
allowing it to be efficiently trained with gradient descent.
Preliminary results demonstrate that Neural Turing
Machines can infer simple algorithms such as copying,
sorting, and associative recall from input and output
examples.
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3.2 Neural Turing Machines @ P

External Input External Output

NG,

Controller

/7 N\

Read Heads Write Heads

I I

Memory

Figure 3-3. The structure of NTM
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3.2 Neural Turing Machines @ P

The copy task tests whether NTM can store and recall a
long sequence of arbitrary information.

10

‘ '|| | | | LSTM —
NTM with LSTM Controller =
. NTM with Feedforward Controller

cost per sequence (bits)

0 200 400 600 800 1000

sequence number (thousands)

Figure 3-4. Copy learning curve



. 3.3 Learning to learn f s
\ ’ Data Mining Lab

Replace
0

t+1

=60 —avVro)
by
6

t+1

=0 +g(V£r(@6), ¢)

optimizer ‘ ' optimizee

Figure 3-5.
The idea of learning to learn

Andrychowicz M, Denil M, Gomez S, et al. Learning to learn by gradient descent by
gradient descent[C]. Advances In Neural Information Processing Systems. 2016:
3981-3989.




3.3 Learning to learn ( s
\ ’ Data Mining Lab

How is it trained?

— —Train an optimizer on a simple class of synthetic 10-
dimensional quadratic functions.

f(0)=[we-y,

What is it used to do?

— — Train other neural networks, such as neural network for
MNIST, neural network for CIFAR-10 and neural network for
Neural Art and perform wonderfully.
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| —— LSTM —  NTM-BFGS -« RMSprop Adadelta SGD
~  LSTM+GAC - ADAM Rprop ----  Adagrad

0.50-\ 0.50

.
e,

0.25 |'.. L o e

......
.....

Figure 3-6.

The learning curve of learning to learn
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NAODONG! ! !
arg min |X —AS||;
st. ASeR,

Now that the updating has been the result of learning, can the
objective function/assumption + metric criterion design also be
the propose of learning to learn?

Idea is cheap...

Marblestone A H, Wayne G, Kording K P. Toward an integration of deep learning and
neurosciencell]. Frontiers in Computational Neuroscience, 2016, 10.
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% 0| 5
Lol w =
- &
5%
(a) A = 0.001 (b) A = 0.01
o 9 & =1
A «b e
. . & Al
= - . & cy | . 3
- A | 9_ : _
& O ’ 2 L =1L + AL
¢ $ oo ’

(¢) A=0.1 (d) A=1

W' x +b 2

:_Zmllog neyl . gi

Figure 3-7. — Z Wl x;+b,
The result with center loss €

X—C

Wen Y, Zhang K, Li Z, et al. A Discriminative Feature Learning Approach for Deep Face
Recognition[C]. European Conference on Computer Vision. Springer International

Publishing, 2016: 499-515.
S
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3.5 MC under Self-Expressive Models @ I

The solution of our algorithms recover missing entries and
provides a similarity matrix for clustering.

Our algorithms can deal with both low-rank and high-rank
matrices, does not suffer from initialization, does not need
to know dimensions of subspaces and can work with a
small number of data points.

Elhamifar E. High-Rank Matrix Completion and Clustering under Self-Expressive
Models[C]. Advances In Neural Information Processing Systems. 2016: 73-81.
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3.6 Generalized Similarity Measure @ I

Resulting in a novel generalized similarity measure, defined as:

ACd |[x
Slx,y) =[xy 1]|C"'Be
d' e'r||1

Our similarity model [1] can be viewed as a generalization of
several recent metric learning models [2] [3].

[1] Lin, L., Wang, G., Zuo, W., Xiangchu, F., & Zhang, L. (2016). Cross-Domain Visual
Matching via Generalized Similarity Measure and Feature Learning.

[2] Z. Li, S. Chang, F. Liang, T. S. Huang, L. Cao, and J. R. Smith, “Learning locally-
adaptive decision functions for person verification,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit, 2013, pp.3610-3617.

[3] D. Chen, X. Cao, L. Wang, F. Wen, and J. Sun, “Bayesian face revisited: A joint
formulation,” in Proc. Eur. Conf. Comput. Vis. Springer, 2012, pp. 566—-579.
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3.6 Generalized Similarity Measure @ I

From linear to affine transformation:

Figure 3-8.
The generalized similarity measure
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To carry on deep learning framework: ’

3.6 Generalized Similarity Measure @ I

S(x, y) = S(£), £,(»))

(Acd ]| £x)]
—[F) £ 1| T Be || £()
_a’f eff_ 1

= 2L + LG + 207600 - AL £ (L£(0)) + 26 £(y) + £

(#) Concate (=) Slice

20x3x180%130' 5%5 Conv 20x32x30=21 ; :
'+ ReLU 1 : : 50x400 —> Lafi(x) :
- ' + 3x3 MaxPool : . < FC :
X oy —= _ _220x400:  —>fi(x) —> ;
: : : -1 Léfix) ¢
: L =1(%) :5%5 Conv + : :
' ‘ReLU + : 1, 47
Y 3x3 MaxPool FC FC 1 T ¢ :

: @ —> —| | —)@ 20%801
200x3x180x130 A : = | :
----------- X 2(y) : 220x32x9%6 ' '~—> Lgfa(y) :
y , — 220x400 : > BO)—> v
15%5 Conv : ; 200%400 —1> Lefxy) !
............ .+ ReLU : : :
+ 333 MaxPool 500x32x30x21 | : T 'R
SRR RSO SO 200x801

Domain-specific sub-network Shared sub-network Similarity sub-network

Figure 3-9. The generalized similarity measure
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3.6 Generalized Similarity Measure @ I

Result in person re-identification:

1 T T T — o ———— =

=

=
o
T
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= 20.65%DFFPNN
54.74%I0LA
5.53%ITML
14.17%KISSME
13.51%L0M
T 29%LMNN 1
10.42%RANK
5.6%S0DALF
B.76%eSDC
—— 22 0%DRSCH

32.7%KML
—&— 58.4%0urs
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=
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identification rate
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s
T
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rank

(a) CUHKO

S i e

10.52%Euclid |
27T BTHFPNN 4
65.00%IDLA
17.10%ITML
28 40%KISSME
26.45%LDM |
21.17T%LMNN
20.61%RANK
9.9%SDALF [

identification rate

22.82%e3DC

— 34 30%LMLF

—8— 66.50%0urs.
.

i L d L
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rank

(b) CUHKO1

Figure 3-10. The evaluation in person re-identification
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